Tracking of Multiple Objects Using Optical Flow Based Multiscale Elastic Matching

نویسندگان

  • Xingzhi Luo
  • Suchendra M. Bhandarkar
چکیده

A novel hybrid region-based and contour-based multiple object tracking model using optical flow based elastic matching is proposed. The proposed elastic matching model is general in two significant ways. First, it is suitable for tracking of both, rigid and deformable objects. Second, it is suitable for tracking using both, fixed cameras and moving cameras since the model does not rely on background subtraction. The elastic matching algorithm exploits both, the spectral features and contour-based features of the tracked objects, making it more robust and general in the context of object tracking. The proposed elastic matching algorithm uses a multiscale optical flow technique to compute the velocity field. This prevents the multiscale elastic matching algorithm from being trapped in a local optimum unlike conventional elastic matching algorithms that use a heuristic search procedure in the matching process. The proposed elastic matching based tracking framework is combined with Kalman filter in our current experiments. The multiscale elastic matching algorithm is used to compute the velocity field which is then approximated using Bspline surfaces. The control points of the B-spline surfaces are used directly as the tracking variables in a Kalman filtering model. The B-spline approximation of the velocity field is used to update the spectral features of the tracked objects in the Kalman filter model. The dynamic nature of these spectral features are subsequently used to reason about occlusion. Experimental results on tracking of multiple objects in real-time video are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated detection and tracking of multiple faces using particle filtering and optical flow-based elastic matching

The design and implementation of a multiple face tracking framework that integrates face detection and face tracking is presented. Specifically, the incorporation of a novel proposal distribution and object shape model within the face tracking framework is proposed. A general solution that incorporates the most recent observation in the proposal distribution using a multiscale elastic matching-...

متن کامل

A Novel Tracking Framework Using Kalman Filtering and Elastic Matching

A novel region-based multiple object tracking framework based on Kalman filtering and elastic matching is proposed. The proposed Kalman filtering-elastic matching model is general in two significant ways. First, it is suitable for tracking of both, rigid and elastic objects. Second, it is suitable for tracking using both, fixed cameras and moving cameras since the method does not rely on backgr...

متن کامل

Fast Simultaneous Tracking and Recognition Using Incremental Keypoint Matching

This paper presents a unified approach to object recognition and object tracking, combining local feature matching with optical flow. Like many traditional recognition algorithms, the one described here implements recognition by matching detected image patches against a database of known objects. This algorithm, however, matches keypoints incrementally, meaning that it only tests a few keypoint...

متن کامل

Optical flow-based probabilistic tracking

In this paper, we present an observation model to track objects using particle filter algorithms based on matching techniques for computing optical flow. Although optical flow information enables us to know the displacement of objects present in a scene, it cannot be used directly to displace an object model since flow calculation techniques lack the necessary precision. In view of the fact tha...

متن کامل

Optical Flow-Based Person Tracking by Multiple Cameras

This paper describes an optical flow-based person tracking method using multiple cameras in indoor environments. There are usually several objects in indoor environments which may obstruct a camera view. If we use only one camera, tracking may fail when the target person is occluded by other objects. This problem can be solved by using multiple cameras. In our method, each camera tracks the tar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006